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Fully developed pulsatile flow in a curved pipe 
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(Received 22 ,June 1987 and in revised form 1 1  February 1988) 

The fully developed region of periodic flows through curved pipes of circular cross- 
section and arbitrary curvature has been simulated numerically. The volumetric flow 
rate, prescribed by a cosine function, remains positive throughout the entire cycle. 
Such flows are characterized by three parameters : the frequency parameter a ,  the 
amplitude ratio y and the mean Dean number K“,. We use the Projection Method to 
solve the finite-difference approximation of the Navier-Stokes equations in their 
primitive form. The effect of K, on the flow has been extcnsively studied for the range 
0.7559 < K,  < 756 for M: = 15 and y = 1, and the curvature ratio, 6, equal to +. 
Interactions between the Stokes layer and the interior arc noted and a variety of 
pulsatile motions along with reversal of the axial-flow direction are revealed. The 
manner in which the secondary motions evolve with increasing Dean number, and 
how they change direction from outward to inward ‘centrifuging’ at the centre. is 
also explained. Reversal in the axial flow is observed for all values of Dean number 
studied and occupies a region ranging from the area immediately adjacent to the 
entire wall for low values of Dean number to the entire inner half of the cross-section 
for larger values. When reversal of the axial flow is present, the local maximum axial 
shear stress is found at the inner bend where the backflow region is located. The 
values of circumferential shear stress for K, = 0.7559 and 151.2 confirm the existence 
of a single-vortex structure in the half-cross-section, whereas the values for larger 
values of mean Dean number are indicative of more complicated vortical structures. 

1. Introduction 
Unsteady flows in curved conduits are considerably more complex than those in 

straight conduits, and exhibit phenomena not yet fully understood. This work was 
greatly motivated by the practical importance of such flows along with questions 
raised regarding them. For example, as curved sections are present almost invariably 
in all piping systems it is important to know the pressure drop in the developing and 
fully developed parts of the flow if one is to predict the pumping power required to 
overcome curvature-induced pressure losses. Because thc secondary motions in such 
flows enhance mixing within the fluid as well as heat transfer between the fluid and 
its surroundings, the magnitude of these effects is important in designing helically 
coiled chemical reactors or heat exchangers. For blood flow in the aortic arch, 
knowledge of shear-stress distributions and velocity profiles might improve the 
design of proper artificial heart valvcs or shed light on sites of cholesterol buildup on 
the vessel walls leading to atherosclerosis. There currently exist two schools of 
thought regarding these sites. Caro, Fitz-Gerald & Schroter (1971) claim that 
deposits occur in areas of low wall shear, while Fry (1968. 1973) suggests that they 
occur in areas of maximum wall shear. For a thorough review of recent developments 
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and the role of fluid mechanics in atherosclerosis the reader is rcferred to Nerem 
(1981) and Schettler P t  al. (1983). 

For an extensive revicw of the entire subject of flow through curved pipes the 
reader may consult Berger, Talbot & Yao (1983), Ito (1987) and Nandakumar & 
Masliyah (1986). Periodic flows have been studied extensively during the past two 
decades. Until the present decade most studies have becn either theoretical, 
involving some kind of perturbation, or experimental Some of the most recent 
numerical studies are those by Lin & Tarbell (1980) and Rabadi, Simon & Chow 
(1980). Although in both cases the complete governing equations were solved, both 
works are limited to low secondary Reynolds-number values and small pressure- 
gradient variations, which render them inapplicable to aortic-arch flows. Chang & 
Tarbell ( 1985) obtained numerical results for flow conditions characteristic of the 
aortic arch. They solved, in their complete form, the axial momentum, the vorticity- 
transport and the stream-function equations to obtain rcsults first-order accwrate in 
time and second-order accurate in space. 

In the current study we consider the unsteady laminar flow arising when a 
sinusoidal volumetric flow rate of the form 

Q*(t*) = QZc +Q& cos (wt * )  (1  1 )  

is imposed through a pipe of circular cross-section, where w denotes the frequency, 
and the asterisk indicates dimensional quantities. The fluid is assumed to be 
incompressible and Newtonian. We assume the tube profile is symmetric so that the 
flow in only half of the cross-section need be considered. 

The work of Gong (1979) and Talbot & Gong (1983) has confirmed experimentally 
that a periodic flow entering a curved pipe does become fully developed, in the sense 
that it becomes periodic in time at any cross-section, and independent of axial 
position a t  some position downstream depending on curvature ratio, frequency 
parameter, and Reynolds number. Smith (1976) reported that in the case of steady 
flows through curved pipes the fully developed state is reached at distances along the 
curved tube much larger than the radius of the tube but much less than its radius of 
curvature Our problem, therefore, is a two-dimensional one, treating only this fully 
developed region. Despite the two-dimensionality of the problem there are three 
velocity components t o  deal with, and all three momentum equations are required. 
Because of the fully developed assumption, however, the only axial-variation term 
which appears in the governing equations is thc axial component of the pressure 
gradient needed to drive the flow. These unstcady Navier-Stokes equations are 
written in finite-difference form and solved numerivally by the Projection Method 
(Chorin 1968). 

The results wc obtained are second-order accurate in time and space. We have 
chosen the frequency parameter and curvature ratio to model the flow of blood in the 
aorta. (The values of these parameters are also the ones intended by Gong 1979 ) A 
positive volumetric flow rate with non-zero mean was imposed for the same reason. 
Motivated primarily by the transition of the secondary flow from outward to inward 
centrifuging, as reported by Lyne (1971) at the limit of certain parameters, and by 
the study of Smith (1975), we studied extensively the effect of the Reynolds number 
on the flow. The flow patterns for Be, = 400 (and RP, = 500, Hamakiotes 1987) are 
in very good qualitative and quantitative agreement with Gong's (1979) experiments, 
and the pressure gradient leads the volumetric flow rate by about YO". Throughout 
our calculations wc found that the phase differcnce between pressure gradient and 
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FIGURE 1 .  Toroidal coordinate syst,eni 

flow rate remained constant, independent of Reynolds number, which is consistent 
with Uchida's (1956) findings that the phase differencc is a function of the frequency 
parameter alone. The results also exhibit qualitative agreement with Lyne's (197 1 )  
results and Smith's (1975) cases I11 and 1X. Owing to the theoretical nature of the 
latter two studies their results are asymptotically valid in the limits of certain 
parameters. This is discussed further in $4. 

2. Mathematical formulation 
2.1.  Governing equations 

The equations of motion in conservative, dimensionless form, for momentum and 
mass, in a toroidal coordinate system (figure 1 )  are 

a 
a$ 

(TBu') + - ( B u ~ )  - Hv2 - 6rw2 cos $ 

- --% +- - - 
ar Re, { rH [ a  c?r ( y B g ) + $ ( : g ) ]  

(v sin$-u cos$) H' 

1 a 
a$ 

( rBuv)  + - (Bv') + Bu.2: + Srui2 sin $ 

(v sin+-u cos$) 
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a 
a$ 

(rBuw) + - (Bvw) + Srw(u cos q5 - E sin q5) 

i a  a B a w  - - _ _ _  + { - [ - (rB g) + (7 g)]- g}, (2.3) B a8 Re, rB ar 

where S = a / R  and R = 1 +Sr cos$. Re, is the mean Reynolds number, defined as 
Re, = aW,,:/v, and St ,  is the mean Strouhal number, defined as X t ,  = aw/WrDC. 

Dimensionless variables are defined by 

r* a7 * 
, r = -  . t = wt", 7 =-, (2 .5)  , P = -  

V* v=---- P* 

WD, P%C a PWD, 

where the asterisk indicates dimensional quantities, r is the position vector, ,U 

is the coefficient of viscosity. v is the kinematic viscosity, p is the density, V is the 
velocity vector, P is the pressure, t is the time, z is the viscous-stress tensor and 
WD, = QDc/za2. The reference velocity, WDC, corresponds to the volumetric flow 
rate QDc pumped through a cross sectional area nap, and can be alternatively referred 
to as the time-mean value of the axial velocity. Here, a is the radius of the pipe 
(figure l ) ,  and a volumetric flow rate of the form &(t)  = Quc + QAC cos ( t )  is assumed. 

From the above equations we deduce that the flow is governed by the following 
three parameters : 

(i)  The frequency pararnptpr, a = a(w/v)' = (Re,St,)f. This parameter can be 
physically interpreted in two ways: as the ratio of the pipe radius a to the Stokes- 
layer thickness ( v / w ) i ,  or as the square root of the ratio of a viscous diffusion time 
a2/v to the period of the oscillation l/w. A small value of a implies a large viscous 
layer near the wall compared with a small inviscid core near the centre. or, 
alternatively, a large oscillation period compared with the viscous diffusion time, and 
therefore quasi-steady flow. The inverse of these conclusions would be drawn in the 
case of a large value of a.  A conclusion drawn by Zalosh & Nelson (1973) was that 
as the value of a increases, the secondary convective mixing of the fluid increases 
also. Fluid particles initially near the tube axis migrate to the tube wall. Because of 
smaller secondary velocities, this excursion becomes smaller for increasing a and the 
time required for a fluid particle to return to its original cross-sectional position 
increases. Thus a plays an important role in heat and mass transfer, although an 
optimum value is not obvious. 

(ii) The mean Dean number. K, = 2Re,$. Physically, the Dean number is the 
ratio of the square root of the product of the inertia and centrifugal forces to the 
viscous forces. Since the secondary flows in curved pipes arise primarily owing to 
centrifugal forces, which, in turn, originate from curvature effects, we cxpect the 
magnitude of the secondary motions to  be linked to the curvature ratio S. Because 
6 is a direct measure of the effect of the pipe geometry it affects the balance between 
the three forces, inertia, viscous and centrifugal, Although the effect of 6 has not been 
studied extensively. it can have a major effect on the flow. 

( i i i )  The amplitude ratio, y .  This is the ratio of the alternating to the steady 
cwmponent of the volumetric flow rate. A small value of y would suggest quasi-steady 
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Xame Definition 

Curvature ratio S = a /R 

Amplitude ratio Y = Q.w/Qm 

WU 
Mean Strouhal number S t ,  = ~ 

WDC 

w a Re, = -2% 

K, = __ wDc a (a/R)t  = 2Re, & 

Mean Reynolds number 
v 

Mean Dean number 
V 

Wk,a Re,, 
Rov St, 

Secondary R,eynolds number K, = __ - --a 

Frequency parameter a = a(w /v$  = (St, Re,); 
TABLE 1 .  Flow parameters 

flow. We can see the origins of this parameter if we recall the non-dimensionalization 
of the velocity field: 

where the integrals are over the cross-sectional area of the pipe. 
These, and other pertinent parameters of the problem, are listed in table 1. 

2 .2 .  Boundary conditions 
Initial condition. Singh (1974) used as the initial condition for his analysis of the 

steady entry flow into a curved pipe an inviscid vortex with its origin a t  the centre 
of curvature. Later, the experiments of Agrawal (1975), Agrawal, Talbot & Gong 
(1978) and Choi, Talbot & Cornet (1979) showed that such a profile almost 
immediately developed at the entrance even if the flow entered with uniform 
velocity. We use, therefore, such an inviscid-like vortex profile to initialize the 
velocity field : 

u( r ,  qi, t = 0) = v( r ,  qi, t = 0) = 0. 
1 

1+Sr cosqi’ 
w( r ,  qi, t = 0) = 

The corresponding pressure field, obtained from the Bernoulli equation, is 

1 1 p=-- 
2 (1  +6r COS$)*‘ 

(2.6) 

(2.7) 

Rigid wall. All three components of the velocity field are set to  zero on the wall 
owing to the no-slip condition 

u( 1,$, t )  = v ( l , $ ,  t )  = w(1, $, t )  = 0. (2.8) 

Plane of symmetry. For the range of Reynolds numbers, or equivalently Dean 
numbers, that we are examining. the flow exhibits symmetry across the centreplane. 
as has been confirmed by Gong’s (1979) experiments. (h’cw findings cast doubt on thc 
symmetry a t  higher Reynolds numbers (Wintcrs 1984 ; Wintcrs & Hrindley 1984).) 
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Consequently, we need solve the Navier-Stokcs equations for the half domain 
0 < $ < x only. Thc symmetry conditions are 

au am 
aq5 - aq5 - - - _  -0 ,  v = 0  a t q 5 = 0 , n .  (2.9) 

Fully developed3ow. All streamwisc derivatives are set to zero, except, for that of 
the pressure, i.e. 

(2.10) 

Incompressibility. This condition is necessary because the problem is two- 
dimensional but there are three vclocity components. We integratc the velocity over 
the cross-section noting that it must integrate to the specified volumetric flow ratc. 
In this manner, the pressure gradient iiecessary to sustain the flow is caalculatcd. In 
this case, the condition is 

Q*(t*) = Q:,. + 622, cos (d*) = 2 [ W*Y* d ~ *  d4. 
0 0  

Once again, the asterisk denotes dimensional quantities. Non-diniensionalizing using 
(2 .5) ,  and for Q ,  QDc and QAC using QDC = naZW,,, we obtain 

(2.11) 

3. Numerical formulation 
3.1. The projection method 

To solve equations (2.1)-(2.4) we use Chorin's (1968) Projection Method. The method 
consists of the steps outlined below : 

vzvn=o, +- ( (V-V)  v+ V(V.  V))------- 
v*- vn 1 

At S't, Xt, Re, 

(3.26) 

(3 .3n)  

Herr the asterisk indicates a provisional, or auxiliary, time step t* and corresponding 
values of each quantity. The superscripts, n and nf 1, indicate the time steps at 
which the superscripted quantities are to be evaluated. N is the outward unit vector 
normal to  the boundary r of the flow domain. 

We see that at the first step the momentum equation is solved without the pressure 
gradient to obtain an auxiliary velocity field V*. This velocity field is not physically 
a meaningful field as it does not come from thc correct momentum equations. In the 
second step the Poisson-type equation (3 .2a)  is solved for the correct pressure at the 
next time step, Pn+l. The proper boundary condition to be used with this equation 
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FIGURE 2. Grid system in cross-section: 0 ,  pressure and axial velocity; 
x , circumferential velocity ; t, radial velocity. 

in the continuous case is given by ( 3 . 2 b )  and is derived by projecting the vector 
equation (3.3a) on N .  In  the discrete case, (3.2a) is to be solved subject to (3.3a) and 
V -  Vn+l = 0. Finally, in the last step, the correct velocity field a t  the next time step 
v n + 1  is obtained by solving ( 3 . 3 ~ ~ ) .  

Thus in the Projection Method one first obtains a global velocity field V*, which 
is not divergence-free, which is then projected, hence the name of the method, on a 
divergence-free domain to yield a physical, divcrgence-free, velocity field Vn+'. The 
divergence-free character of this velocity field can be seen if we take the divergence 
of (3.3a), making use of (3.2a). 

3.2. Implementation of the projection method 
To write the continuity and momentum equations (2.1)-(2.4) in a computational 
finite-difference scheme we discretize the domain of interest, the half-cross-section, 
using a non-uniform staggered mesh. The mesh is constructed in such a way that the 
pressure is defined a t  the centre of the cell while the three velocity components, u, 
v and w, are defined a t  different positions on the boundaries of the pressure cell, as 
indicated on figures 2 and 3. Because previous work on this problem suggests that the 
flow structure is complicated in the region of the inner bend, q5 = 180°, the mesh is 
made finer near the inner bend and coarser as we proceed towards the outer bend. For 
the radial direction, because of the boundary layer growing on the wall, r = 1, a finer 
grid is required in this region than in the core where no drastic velocity changes 
occur. 

Time increments were chosen to be uniform for all the simulations presented. 
Chang & Tarbell (1985) used 82 time steps per period for sinusoidal-flow simulations 
and 164 steps per period for pulsatile-flow simulations. In our simulations 400 time 
steps per period are used. 

To evaluate the auxiliary velocity field, V*, we have sought implicit schemes which 
are convenient to use, and accurate to O(At2)+O(Ax2),  where Ax is any one of the 
three space increments Axi, i = 1,2 ,3 .  We decided on the Douglas & Gunn (1964) 
AD1 method (see also Douglas 1962). Throughout the calculations centred 
differencing in space is used. The method is unconditionally stable. An important 
advantage of AD1 methods is that both steps lead to tridiagonal matrices, for which 
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cross flow and p-cell m.  in the &direction 

;I-: w-cell in the &direction 

r--q w- and p-cell in the 
L!.;'d cross-section 

u-cell in the 

r - i u-cell in the 
LX_d cross-section 

El cross-section L - - J  

FIGURE 3. Velocity and pressure cells. 

fast and efficient methods of solution have been developed. In  the Thomas algorithm 
used here the tridiagonal matrix is converted into an upper triangular matrix which 
is solved by direct backward substitution. 

The boundary conditions for V* are derived from (3 .3a) ,  rewritten as 

(3.36) 

where G denotes an approximation to the gradient operator. Because the pressure at 
the next time step, n+ 1, is not yet known, we use a Taylor-series expansion : 

(3.4) 
i3GP 

at 
GP"+1 = G P n  + At-+ O(At'). 

We then substitute (3.4) for the pressure gradient at the time step tn+l  into ( 3 . 3  6) to 
get an expression to evaluate the boundary conditions for the auxiliary velocity field 
in terms of known quantities: 

At V* = Vn+l+-GPn+O(At2 ) .  
St m 

(3 .5)  

The pressure is evaluated from the Poisson-type equation ( 3 . 2 ~ )  subject to the 
boundary condition (3.2 b ) .  We use the method of successive over-relaxation. Note 
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JC corresponds to 4 = in 

V 

FIGURE 4. Centre cell for the pressure and the axial velocity. 

that  this Poisson equation for the pressure results from taking the divergence of 
(3.36) and using the equation of continuity, V. V = 0. 

The last step of the calculations is the evaluation of the velocity field, Vn+l, at the 
next time step, tn+l. The two secondary components of the velocity u,  and v,  are 
calculated explicitly from the corresponding components of (3.3 6) by direct 
substitution for the known quantities 

The calculation of the axial velocity component, w, is more subtle. Unlike the two 
secondary velocities. the axial component cannot be calculated from the axial 
component of ( 3 . 3 b )  since the assumption of fully developed flow prevents us from 
evaluating the pressure as a function of the axial direction, and the physics of the 
problem suggests that  the axial pressure gradient, aP/aO, is a function of time only. 
Taking these facts into account we proceed as follows: first we integrate the axial 
component of the vector equation (3.3 6 )  : 

(3.7) 

We now note that wn+l must integrate over the cross-sectional area, a t  any time, to 
the specified volumetric flow rate. At this point the incompressibility condition, 
(2.11), is used to give an analytic value for this integral. The integral of the auxiliary 
axial velocity component, w*, is performed numerically. Finally, since the axial 
pressure gradient is uniform over the cross-section, i t  can be removed from the 
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integral and, being the only unknown in the equation, can be solved for directly. 
Then wn+' is calculated from the axial component of ( 3 . 3 b ) ,  

The centre of the pipe, r = 0, is a mathematical singularity, not a physical one, as 
both the velocity and pressure fields are well behaved there. The staggered nature of 
our mesh, however, requires that  a nodal point be placed at the centre. For this cell 
with centre at r = 0 special care has to  be taken to  assure conservation of mass and 
axial momentum. We do not have to concern ourselves with the other two 
momentum components as their corresponding cells are not located on the centre 
(figure 4). For our treatment of the centre we use an integral analysis patterned after 
that of Soh (1983), where the reader can find more detail about the procedure. 

Soh's calculations were all explicit ; the ones reported here are implicit. This can 
pose a problem when we treat the centre, and try to incaorporate it in the remainder 
of the calculations. For example, the very important advantage of AD1 methods, 
that  they yield tridiagonal matrices, whose properties and solution methods are well 
known, would be in jeopardy if we treated the centre implicitly. To avoid this we 
treat the centre explicitly, using an Allen & Cheng-type (1970) time-splitting 
technique, following Soh (1983). 

For the details of the numerical calculations, the interested reader may consult 
Hamakiotes (1987). 

4. Results and discussion 
4.1. Preliminaries 

The flow-field development has been calculated for the range of Reynolds numbers 
listed in table 2 ;  a portion of these results is included and discussed here. The 
curvature ratio, amplitude ratio and frequency parameter were chosen to have the 
values $, 1 and 15, respectively. Calculations were first carried out for Re, = 1 ,  
the initial velocity field being that of an inviscid vortex with its origin at the centre of 
curvature. Upon convergence these results were used to initialize the velocity field 
for the next higher Reynolds number. This continued up to Re, = 1000. The 
algorithm was tested and proved to converge to the same velocity field regardless of 
the manner in which the velocity field was initialized. When this initial field had 
uniform axial velocity, and zero secondary velocity the algorithm proceeded to the 
final, correct results after evolving through an inviscid vortcx profile. When this 
potential vortex profile was used to initialize the field, the algorithm converged 
fastest. 

The successive over-relaxation iterations for the pressure were stopped when the 
relative change in pressure converged to within less than In fact, i t  was first 
verified that the pressure could be made to  converge to machine accuracy, but we 
chose not to impose this extreme degree of accuracy to save computing time. 
Roughly 90 iterations per time step were required. 

The scheme used is iterative in the sense that integration of the governing 
equations is carried out for a number of cycles until periodicity of results is achieved. 
Experimentation showed that whereas it only takes about 10 cycles for the relative 
change in the axial component of the velocity and the pressure to each converge to 
less than lop4, it takes three to four times as many cycles for the rclativc changes in 
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Hrrn 
1 

50 
I00 
200 
300 
400 
500 

1000 

s = + , a =  15. y =  1 

St", 4 
225.0 6.349 x 

4.500 1.587 
2.250 6.349 
1.125 25.40 
0.7500 57.14 
0.5625 101.6 
0.4500 158.7 
0.2250 635.0 

Kin 

37.80 
75.59 

0.7559 

151.2 
226.8 
302.4 
378.0 
756.0 

TABLE 2. Parameter values of flow calculations 

0 ;n n ;7I 2n 

t = W l *  

FIG~JRB 5. Volumetric flow- rate. 

the two secondary components of the velocity to converge to less than If the 
calculation is caontinued until the two secondary velocities converge to  less than the 
sct criterion of lW3, we find that the axial velocity and the pressure have converged 
to better than or 10P. 

The assumed volumetric flow rate is shown in figure 5. The resulting local - a t  each 
grid point - and global the sum of all local values - divergence was calculated to  
be between 10P and 10-lo a t  all times. The fact that the divergence is of the same 
order of magnitudc as the error in the pressure further validates the numerical 
procedure employed The numerically computed flow rate was calculated to be 
within less than 2 x lW4 ?4 of the analytic flow ratc at all times for all values of mean 
Reynolds numbers. 

Each time cycle was subdivided into 400 time steps, so At = 21~/400. A non- 
uniform staggered 14 x 19 mesh, in the radial and circumferential direction 
respectively, was uscd to discretize the physical domain of the half-cross-section. 
Ccntred differencing in space was used, accounting for thc stability and second-order 
accuracy of the code. The effect of grid refinement was also studied. Increasing the 
mesh points to 24 x 24 changes the results only very slightly. The 14 x 19 grid system 
is thc same as that used by Soh (1983). The calculations were carried out on the 
IBM 3081 and 3090 a t  the University of California, Berkeley. It required about 3 min 
of CPI! time to complcte a cycle. 

The results are shown on figures 6-10. Each consists of a series of six Iiarts, 
( u ) - ( f ) .  Part ( a )  of each figure shows the calculatcd pressure gratlicrit (with its 
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Time, t = wr* 

FIGURE 6 (a-c). For caption see facing page. 

algebraic sign) for the imposed volumetric flow rate. Hence, the pressure gradient 
driving the flow is the negative of what is shown. Consistent with previous work 
(Uchida 1956), we find that the pressure gradient driving the flow leads the 
volumetric flow rate by about 90" regardless of Reynolds number. The following five 
parts, ( b ) - ( j ) ,  show the flow-field development over the cycle for the corresponding 
value of mean Reynolds number. The times a t  which the results are shown 
correspond to the cycle of figure 5. On each of the figures 6-10, ( b ) - ( j ) ,  the left-hand 
side corresponds to the inner bend and the right-hand side to the outer bend. Because 
of the assumed symmetry of the flow with respect to the centreplane, on the upper 
half are plotted the secondary-velocity vectors, on the lower half the axial isovelocity 
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I cn 

35 

FIGURE 6. ( a )  Calculated axial pressure gradient for Re, = 1. (b- f )  Secondary-velocity vectors and 
axial isovelocity contours for Re,,, = 1 ,  h = 18: ( b )  wt* =ax; ( c )  4.; ( d )  x ;  ( e )  $T; (f) zx. 

contours. To keep the secondary-velocity vectors reasonably sized and so that they 
do not extend beyond the cross-section, they are multiplied by a scaling factor, A,  
whose value varies with Reynolds number and is listed in each of the figures. A vector 
of length equal to the radius of the pipe would correspond to a secondary velocity of 
magnitude l / A .  h’ote that all figures refer to dimensionless quantities. 

Figures 1 1  and 12 are sets consisting of four parts each showing the axial and 
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10 

Time, t = wt* 

FIGURE 7 (a-c). For caption see facing page 

circumferential component of the shear stress, respectively. They are intended to  
illustrate thc temporal dcvelopment over the cycle of these shear-stress components 
for each value of Reynolds number considered. 

For the sakc of clarity, we note tha t  from now on when wc use the terms 
‘acceleration ‘ and ‘deceleration ’ we rcfer to  the volumetric flow rate as shown in 
figure 5, not to  the axial pressure gradient. 

A complete set of all our results is presented in Hamakiotes (1987). For 
quantitative validation of o u r  computational prowdure we h a w  compared our 
results with the experiments of Gong (1979). In  his second experiment Gong used 
S = +. y = 1.02, a = 12.5. and K, ,  = 37%. The closest case to  his tha t  we simulated was 
for thc valucs S = 3. y = 1, a = 15. and K ,  = 378. We have verified tha t  when Gong’s 
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FIGURE 7. ( a )  Calculated axial pressure gradient for Re, = 200. (6-f ) Secondary-velocity vectors 
and axial isovelocity contours for Re, = 200, A = 0.4: (6) wt* = an; ( c j  in; ( d )  7 ~ ;  ( e j  $: ( f j  in. 

results are non-dimensionalized they are in very good agreement with ours 
considering the very minor difference in Dean number and the somewhat more 
substantial difference in the frequency parameter. 

4.2. Flow-$eEd development 
We start with the flow-field development over the cycle for R e ,  = 1. The results are 
shown in figure 6(a-f ). Figure 6 ( a )  depicts the computed pressure gradient necessary 
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to drive the flow corresponding to the imposed volumetric rate shown in figure 5. We 
observe that the axial pressure gradient is very nearly periodic with a phase different 
from that of the volumetric flow rate. In fact, keeping in mind the discussion of $4.1, 
we infer that the flow lags the driving pressure gradient by approximately 90". This 
is in agreement with the findings of Uchida (1956). Figure 6 (b- f )  shows the flow-field 
development. Referring to the secondary flow, we observe a vortex appearing almost 
in the middle of the core immediately above the centre of the pipe. The magnitudes 
of the secondary velocities on the cross-section are such that the vortex is a very 
weak one. These features, i.e. the existence of the vortex, the location of its centre 
and its weak strength, prevail qualitatively throughout the cycle, as if the secondary 
flow were steady. That this is not the case for all aspects of the flow can be seen from 
figure 12(a), where the circumferential shear stress along the circumference of the 
pipe is plotted for a sequence of times through the cycle. The unsteady nature of the 
secondary streaming is evident. Upon deceleration, the axial velocity reverses 
direction shortly after ot*  = &. That this is no coincidence can be deduced from the 
pressure gradient, figure 6(a ) .  At wt* = i7c the slope of the pressure gradient is almost 
zero and about to reverse direction, changing from an adverse to a favourable 
gradient. (Again, note that the actual pressure gradient which drives the flow is the 
negative of what is plotted in part ( a )  of figures 6-10.) The inertial forces are out of 
phase with the viscous forces. The interaction of the two is such that the net axial 
flow a t  this time starts reversing its direction. At wt* = II: the backflow occupies a 
region of thickness about one third of the radius along the wall and extending as far 
as the outer wall. Upon acceleration, the fluid gains enough momentum to be swept 
downstream thus eliminating any reverse-flow region. 

Overall, the secondary flow patterns observed over the cycle for Re, = 1 resemble 
a Dean-type secondary flow as described by Dean (1927, 1928), Smith (1975, 1976) 
and Lin & Tarbell (1980). Instead of the frequency parameter 01, Smith, and Lyne 
(1971) used a parameter p which is related to 01 by the equation p = 2/2/01. From this 
we calculate that for a: = 15, /3 = 0.0943. From table 2 we see that the secondary 
Reynolds number for Re, = 1 is R, = 6.349 x These conditions are closely 
approximated by Case 111 of Smith's (1975) study for p 4 1,  K,  = O(1) and R, 4 1. 
According to this case, as stated by Smith, the 'problem reverts to the conventional 
Dean problem '. Owing to the low value of the mean Dean number, K, = 0.7559, or 
mean Reynolds number, the flow exhibits the simplest of the Dean-type secondary 
flow characteristics as outlined by Smith: the Stokes layer along the wall and the 
interior core. Together they constitute a single vortex over the half-cross-section 
centrifuging fluid outward along the centreplane and recirculating it along the pipe 
wall. 

Another feature to  be noted is that throughout the cycle the maximum axial 
velocity is located slightly off the centre towards the inner bend. This was also 
observed by Bertelsen & Thorsen (1982) and Mullin & Greated (1980). However, no 
conclusion can be drawn from these facts as the conditions of those investigations 
were quite different from ours. For example, Bertelsen & Thorsen solved the problem 
of a sinusoidal flow with zero mean and, in addition, their frequency parameter was 
larger than ours. Mullin & Greated's work used parameter values closer to ours but 
with frequency parameter still significantly lower. 

Extending the mean Reynolds number to larger values, we obtain the results of 
figure 7(a-f) for Re, = 200. The vortex whose centre earlier had been located right 
above the centre of the pipe moves closer to the wall. Encountering the boundary 
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layer which forms along the wall, the vortex is forced to mushroom out spreading 
toward both the inner and the outer bend. This motion of the vortex dominates the 
secondary flow and enhances the gradients in the boundary layer reducing it further 
in thickness. When the accelerative phase begins, all of the secondary flow patterns 
are significantly reduced in magnitude. 

Referring to the axial isovelocity contours it is interesting to notice that although. 
like for Re, = 1, the largest region of backflow occurs a t  wt* = n, it now shows 
a tendency to collect in the inner portion of the pipe. The region of backflow, 
which extended along the wall all the way from the inner to the outer bend and was 
about one-third of the radius thick for R e ,  = 1, has now decreased significantly in 
thickness from 4 = to the outer bend ($ = 0). To compensate for this decrease in 
thickness practically the whole inner half of the pipe is filled with fluid of negative 
axial velocity. 

The mushrooming of the vortex is even more dramatic and its effect on the rest of 
the flow very pronounced for Re,  = 300 (figure 8a-f ). We observe that from as early 
into the cycle as wt = (figure 86), the flow has a tendency to rotate near the centre 
in a fashion counter to the way it has before, i.e. the fluid tends to move inward, a t  
least in part of the neighbourhood of the centre. The centre appears as a sink for part 
of the fluid around it. This portion of the fluid escapes from the small region right 
above the centre. This motion near the centre can be attributed to a suction effect 
caused by the faster moving fluid further away from the centre. From the isovelocity 
contours we infer that a good deal of the core is largely inviscid. From the secondary- 
velocity vectors we see that the fluid moves faster further away from the centre and 
immediately ahead of the 'centre' of the vortex. A direct application of Bernoulli's 
equation tells us that the pressure is higher a t  the centre than it is below the vortex. 
This pressure imbalance gives rise to a suction effect. The fluid immediately below 
the vortex moves outward. The vectors through the third grid points show that the 
outward-going fluid moves almost tangentially along the circumferential direction. 
These vectors form a streamline which approaches the centreplane almost a t  right 
angles. Owing to the symmetry of the flow there is a similar streamline coming from 
the lower half of the cross-section. When these two streamlines meet, they give rise to 
a flow similar to a stagnation-point flow pattern. The flow splits into two parts, one 
moving toward the outer bend and one toward the centre. The pressure gradient 
pushing the fluid inward is large enough in this region near the centre to overcome 
the outward-directed centrifugal force pushing the fluid outward. It is this force 
imbalance that is responsible for the inward-moving fluid in this part of the 
neighbourhood of the centre. As the deceleration period continues, the vortex 
concentrates closer to the inner bend (see, e.g. ot* = 3.). In so doing it gives rise to 
a shear layer in the vicinity of the centre and toward the inner-bend side, as shown 
in figure 8 ( d ) ,  for wt* = 7c. This shear layer persists throughout most of the 
acceleration period. Throughout this period any existing secondary flow becomes 
significantly weaker, but still persists. On the other hand, we observe a dramatic 
change evolving from wt* = $ 7 ~  to wt* = z7c. The very small vortex which started 
appearing where the centreplane intersects the inner bend at  wt* = %n spreads out 
to a much larger size a t  the next time, wt* = an. Thus far most of the faster-moving 
fluid along the axial direction has been located closer to the outer bend. Prom 
figure 8( f ) ,  for wt* = in, it is evident that the axial velocity has increased 
dramatically compared with its values a t  the previous time; in fact, it has almost 
doubled. This increase in the axial velocity, along with its spreading out to cover 
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Time, t = wt* 

FIGURE 8(a-c). For caption see facing page. 

almost the entire cross-section, weakens completely any existing secondary flow 
pattern. Finally, we note from figure 8 ( e )  that the boundary layer caused by the 
secondary streaming separates in the neighbourhood of the inner bend and gives rise 
to a small vortex in that region. This is the first sign of boundary-layer separation 
in the secondary flow. 

Clearly, the results for Re, = 300 mark a transition to much more complex flow 
patterns. Looking a t  the flow-field development for Rerr = 400, figure 9 (uTf ), we see 
that the mushrooming cffect of the vortex originally a t  90" has become more 
pronounced. Itt results in a vortex at the inner bend, and one located toward the 
outer bend early on into the cycle (figurc 96). What we described for the previous 
Reynolds number as a stagnation-point flow on the centreplane located toward the 
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FIGURE 8. ( a )  Calculated axial pressure gradient for Re, = 300. ( b - f )  Secondary-velocity vectors 
and axial isovelocity contours for Re, = 300. h = 0.4: ( b )  wt* = ax: (c)  i n :  ( d )  n: ( c )  %n: ( f )  $n, 

outer bend, has now moved further outward resulting in an inward flow at the 
right-half of the vicinity of the centre. We note tha t  R e ,  = 300 marks a transition. 
in the half-cross-section, from a two-vortex to  a three-vortex flow pattern. Cp to  
R e ,  = 300 we have two main vortices characterizing the flow: one tha t  rotates the 
fluid from the inner bend to  the outer bend along the centreplane. which then rcturns 
along the wall forming a boundary layer, and one tha t  is located a t  about @ = in .  The 
latter is located near the rentre a t  low Reynolds numbcrs. As the Kcynolcls numbcr 
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Time, t = wt' 

FIGURE 9 (a-c). For caption see facing page. 

increases it moves towards the wall almost along the g5 = in line. At about Re, = 300 
the motion of this vortex encounters a pressure gradient in the boundary layer too 
large to overcome. It is forced to mushroom out toward both the inner and outer 
bends giving rise to two vortices, located in the vicinity of each bend. Of the two 
vortices the one located near the inner bend seems to be the dominant one, since 
whereas this one persists for most of the cycle, the other has completely disappeared 
by wt* = in. At wt* = $x the secondary flow has lost its strength almost completely 
and the secondary boundary layer separates a t  the inner bend. This phenomenon was 
first observed at  Re,,, = 300: occurring a t  the same time as here, wt* = $n. The 
boundary-layer separation results in a vortex being generated a t  the inner bend. This 
vortex expands outward to almost half the radius a t  wt* = ax. At this time we can 
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FIQURE 9. (a) Calculated axial pressure gradient for Re, = 400. (6-f ) Secondary-velocity vectors 
and axial isovelocity contours for Re, = 400, h = 0.3: ( 6 )  wt* = in, ( c )  $I; (d )  Z:  ( e )  $z: ( f )  $I. 

also see clearly what Gong terms a 'ridge', a region of fast moving fluid bounded on 
both sides by slower moving fluid. This can be seen from the isovelocity contours, 
and the extent of the contour labelled 2. 

At Re,  = 1000, figure 1O(u-f ), we observe a rather interesting phenomenon. The 
strong vortex that appears a t  about q5 = 130" a t  wt" = an and that has not thus far 
appeared to  be totally independent of the rest of the flow, begins to exhibit the 
tendency to become so. Notice how it is only a very narrow region on the upper side 
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of this vortex in which the Auid gets entrained, and escapes from the vortex. Because 
of the axial velocity any existing vortex in three dimensions implies a helical motion. 
If the axial velocity were absent, a vortex would consist of the same portion of fluid 
circulating around the centre of the vortex. This vortex, however, to which we have 
been referring (usually called the Dean vortex) is not closed, and the fluid within it is 
continuously renewed by fluid from outside the vortex. For the first time we observe 
a tendency of this vortex to be closed, and so were it not for the axial velocity the 
same lump of fluid would continue circulating around. Indeed, this vortex does 
become closed at wt* =+IT. In  reference to the points made at the end of the 
discussions for Re, = 300 and 400 regarding the separation of the secondary 
boundary layer a t  the inner bend a t  about wt* = +IT, we notc that for Re, = 1000 the 
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FIGUKE 10. ( a )  Calculated axial pressure gradient for Be, = 1000. (03) Secondar~-relocit~ vectors 
and axial isovelocity contours for Re, = 1000. A = 0.4: ( b )  wt* = $A: (c) $A; ( d )  A :  ( e )  $A: ( f )  fx .  

separation occurs again in the neighbourhood of the inner bend. There are, however, 
the following two differences : ( a )  the separation occurs now from the very beginning 
of the cycle and is seen in figure 10(b)  for wt* = an; ( b )  the point of separation has 
moved farther away from the inner bend than where it was for I Z p m  = 300 and 
400. 

Up to Re,,, = 300 the fluid experiences an outward centrifuging-type of secondary 
motion similar to that observed by Dean (1937, 1928) for a steady pressure gradicmt 
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along the pipe. For Re, = 300. or K, = 226.8, for the first time we observe a 
tendency for the flow in thc interior to behave in the opposite sense to that predicted 
for the steady case. This type of behaviour was first reported by Lync (1971) in the 
limit a + co. Lyne observed this kind of unexpected secondary motion in this limit 
of a for both small and large values of Reynolds number. It should, Iiowever, be kept 
in mind that Lyne's work is valid for a pipe whose radius of curvature is assumed 
large compared with its cross-sectional radius, and for axial pressure gradients which 
arc sinusoidal in time with zero mean. In  this same paper Lyne also presented 
experimental data in support of his theoretical results. In  his experiment the 
parameters had the values 6 = 0.075, e = 0.18, R, NN 24, /3 = 0.05. We have used 
6 = $ = 0.1429, .c = 1.0942, R, = 25.4, p = 0.0943. Note that our 6 is twice that of 
Lyne. These values have been obtained for the case Re, = 200, for which, from 
table 2, we have that R, = 25.4. The rarameters p and c relate to  ours by the following 
expressions. p = .\/2/a, e = P($RS)~. Our results for Re, = 200, figure 7 (a-f ), 
however, do not indicate any inward secondary flow. This is attributable to the 
differences in the values of the determining parameters. 

Bertelsen (1975) carried out an experimental investigation with 6 = 0.1. He 
concluded that Lyne's work was valid for R, d 2 provided that a 3 10. Munson 
(1975) performed experiments for S = 0.63718.89 = 0.0717, imposing an oscillating 
axial pressure gradient. He presented results for the range 0.7 < a < 32. We note first 
that Munson also used a value of S lower than ours and an oscillating pressure 
gradient with, presumably, zero mean. He correlated his secondary Reynolds 
number €2, to a and 6 by R, = 1.0609a2S. The last two figures he presented are for 
a = 10.7 and a = 21. These correspond to R, = 8.7127 and R, = 33.56. respectively, 
using the above expression and the value of 6 that he used. It is for the last set of 
these data that he got agreement with Lyne and observed a reversal of the secondary 
flow, from the outside towards the inside of the bend a t  the pipe centre. This can be 
compared to our flow patterns for Re, = 300. The small discrepancy in the values of 
the parameters a t  which this happens arises from the difference in curvature ratios, 
and by the fact that  Munson used a pressure gradient with zero mean, which we did 
not. 

The work of Smith (1975) is of particular significance as the only theoretical work 
on oscillating Purved-pipe flows with a non-zero mean pressure gradient. He imposed 
a pulsating pressure gradient of the form 

where all variables are in their dimensional form, and is a characteristic velocity. 
The parameters he uses are p (discussed earlier), R,, defined in the manner we have 
(see table l ) ,  and D = Ga3&/pv2, related to our parameters by 

He also states the relationship R, = $(2~,)~p between K,, R,, and p .  The ratio 
GlpwW is the ratio of the magnitude of the steady (or direct) component of the pres- 
sure gradient to that of the unsteady (or alternating) part. From part ( a )  of figures 
6-10, we find that this ratio has the values 0.0889, 0.0889, 0.1000, 0.1064 and 0.1500 
for the values Re, = 1, 200: 300, 400, and 1000, respectively. The corresponding 
values of the parameter D are 10.0013,2000,3375,4788, and 16875. The value of p is 



Fully developed pulsatile ~ O W  in a curved pipe 47 

d 2 / a  = 0.0943, for CL = 15. From the above relation for R,, we find the corresponding 
values R, = 0.0011, 44.4625, 100.0405, 177.8498 and 1111.6. The conditions of 
Re, 200 are best approximated by case I X  of Smith's analysis, one of his two 
analyses where the direct and the alternating components of the axial pressure 
gradient are of comparable magnitude. Case I X  requires that /3 = nD-Q and 
R, = ih2n2D. For Re, = 200, 300, 400, 1000 we get that n = 0.3347, 0.3652, 0.3871, 
0.4776, respectively. Smith comments that 'this has been the first example of a 
core/boundary-layer motion in which the secondary streaming is also largely 
unsteady, an occurrence connected with the actions of the pressure gradient, whose 
steady and unsteady parts are here of comparable magnitude '. Indeed, such signs of 
unsteadiness have been observed in our results for Re, 2 200. Also, Smith points out 
that for n 'small the pulsatility becomes in  out of phase with the pressure gradient 
and the secondary streaming may exhibit reversals in direction during each time 
cycle, owing to the enhanced effect of the frequency of oscillation'. These features 
have been observed in our results too and have been discussed earlier. 

4.3. Shear-stress development 
We now look at  the results for the two components of shear stress for each mean 
Reynolds, or mean Dean, number separately, and how they evolve in time. In  
figures 11 (a-d) and 12(a-d) the left-hand side, = 0, corresponds to the outer bend 
and the right-hand side, q!J = n,  to the inner bend. 

4.3.1. Evolution of axial shear stress with Dean number as a function of time 
Figure 11 ( a )  shows that for K, = 0.7559, or Re, = 1, regions of negative axial flow 

appear only in the time interval < wt* < 7c. When they occur they span the entire 
region adjacent to the wall extending from the inner to the outer bend. The 
maximum axial shear stress is observed a t  wt" = 5.4978 = $T a t  the inner bend in a 
positive flow region. The axial shear stress maintains the same patterns up to about 
K, = 75.59, or Re, = 100. 

Figure 11 (b ,  c) shows that the axial shear stress for higher Reynolds numbers 
exhibits the same behaviour. The main difference is that we now observe separation 
in the axial velocity, first occurring very near the outer bend and spreading inward 
as the Reynolds number is increased. In addition, the maximum value of the stress 
is nearly uniformly distributed throughout the entire circumferential direction along 
the wall, moving from the inner bend, where it was located for Re, = 1, outwards. 
It has moved nearly to the outer bend a t  K,  = 756.0 (figure 11 d )  and now occurs a t  
an even later time than previously, a t  the end of the cycle, wt* = 27c. 

Rabadi et al. (1980) reported similar results. They imposed a pressure gradient of 
the form ap/aO = 1 + k  cos (wt*) for k = 1. For 1 < CL < 15, S = 0.01 and Re = 100 
their results show that the maximum local axial wall shear stress occurs a t  the outer 
bend. Rabadi et al. do not show any negative values for their axial velocity, but thc 
problem they studied is different from ours, as can be seen from the values of 
parameters listed above, and comparison cannot be made with our results. 
Figure 11 (a-d) shows quite clearly that for those periods of time within the cycle for 
which no backflow occurs, the maximum local axial shear stress is located at  the 
inner bend only for Re, = 1, or K, = 0.7559 (figure lla). In contrast, it is located 
a t  the outer bend for the remainder of the values of Reynolds number studied 
(figure llbd). Considering now the periods of time within the cycle that reversal 
of the axial velocity is observed (backflow), we see from figure ll(a-d) that the 
maximum absolute local values of the axial shear stress are invariably located at  the 
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FIGURE 11 (a,b). For caption see facing page. 

inner bend. In  fact, these values are quite sizeable compared with the maximum 
value that is observed in any of these figures. Thus the region of backflow is quite 
intense, the high velocities being evident in those parts of figures 6-10 that  show 
reverse axial flow. 

Similar results were obtained also by Singh, Sinha & Aggarwal(l978) theoretically, 
and by Choi et al, (1979) experimentally. Both of these works, however, deal with the 
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entry region of a curved pipe. Whereas the latter study considered steady flows only, 
the former treated periodic flows with a volumetric flow rate similar to ours and is 
closer to our work. 

4.3 2. Evolution of circumferential shrar strrss with Dean numbrr as a function of 
time 

Figure 12(a ,b)  covering the range 0.7559 < K, < 151.1860, or 1 < Re, < 200, 
shows that the maximum value of circumferential shear stress a t  all times during 
the cycle occurs a t  q5 z in, considerably toward the inner bend for Re, = 1, and 
considerably toward the outer bend for Re,n = 200 Separation of the secondary flow 
is observed in figure 12(c,d). Once again, we see how complicated the flow becomes 
upon interaction of the vortex, initially near the centre a t  low Reynolds numbers, 
with the boundary layer a t  the wall. The resulting mushrooming of the vortex during 
the transition regime of Reynolds numbers is made evident by the extent in the 
circumferential direction in which high values of shear stress occur. Whereas in 
figure 1 2 ( a , b )  the maximum value manifests itself in a narrow and rather sharp 
peak, and located slightly off-centre towards the outer bend, this is not the case in 
figure 12 ( c ,  d )  and maximum shear stress occurs over most of the region along the 
wall. The number of local maxima and minima present in figure 12 (c, d )  suggests thc 
presence of a vortex structure with several pairs of vortices. 

Figure 12(a, b)  shows that up to Re, = 200, or K, = 151.1860, the secondary flow 
is well behaved and consists of one vortex, and that the maximum value of the 
circumferential shear stress shifts from the inner bend (near q5 = fn) to the outer bend 
(near q5 = in) as the Reynolds number is increased. This is due to the shift of the 
centre of circulation of the secondary flow. Rabadi et ccl. (1980) found a considerable 
shift in the location of the local maximum value of the circumferential shear stress 
toward the inner bend as the secondary flow became more intense, i.e. as the 
frequency parameter CI was increased. In our cast' the secondary flow becomes more 
intense with Reynolds number and the shift in the location of the maximum 
circumferential shear stress is opposite to that reported by Rabadi rt al. This is 
attributed to the fact that they used S = 0.01, and Re = 100. Rabadi et al. also point 
out that local wall-shear-stress variations with time depend strongly on a and k .  (For 
the definition of k see 54.3.1.) 

Comparing the values of thc two components of shear stress, we see that although 
the contribution of thc circumferential component is negligible compared with that 
of the axial one for Re, = 1, for Re, 2 200, or K, 2 151.1860, the contribution of the 
circumferential componcnt is almost as large as 50% of that of the axial one. This 
is due solely to the strengthcning of the secondary flow with Reynolds numbcr Yet 
further evidence regarding the strong effect of the secondary flow is provided by the 
peaks and valleys in the wall-shcar profile. Such peaks and valleys are clearly evident 
in figures 11(c) .  l l ( d ) ,  12(c) and 12(d), i t .  for Be, 2 400. or K, 2 302.4, and are 
indicative of the strong effect of the secondary flow. Their appearance for this range 
of Reynolds numbers is consistent with the expectation (see $2.1) that the strcngth 
of the secondary flow increases with Reynolds number.. 

5.  Conclusion 
The fully developed region of sinusoidal flows through curved pipes of' arbitrary 

curvature has been investigated. The effect of Reynolds number on the flow has been 
analyscd for the range 1 < RP, 6 1000. The values of the frequency parameter, 
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a: = 15, curvature ratio, 6 = $, and amplitude ratio, y = 1, have been chosen to  simu- 
late blood flow through the aortic arch (Gong 1979) and have been kept constant 
throughout the calculations. Our results agree very well qualitatively with previous 
theoretical, numerical and experimental investigations. They reveal a series of 
interesting phenomena concerning both the secondary and axial flows. The principal 
results can be summarized as follows : 

( i )  The secondary flow exhibits a Dean-type motion with one vortex in each half- 
cross-section, located near the centre a t  low values of Reynolds numbers ; for larger 
Reynolds numbers the vortex moves towards the wall, where, encountering the 
boundary layer, it is forced to mushroom out giving rise to a much more complex 
secondary flow. 

(ii)  The reversal of the secondary flow from outward, ‘centrifuging’ or Dean-type 
motion, to inward, or Lyne-type motion, occurs a t  about Re, = 300. 

(iii) At low Reynolds number the maximum axial velocity is located off-centre 
toward the inner bend. This location shifts outwards as the Reynolds number 
increases. 

(iv) The axial flow is reversed in a portion of the cross-section for $,n < ot* < 5.. 
The region of negative axial flow becomes maximum for ot* = 7c. It occupies an area 
of width approximately one third of the radius and spans the entire region along the 
wall, extending from the inner to the outer bend for Re, = 1. As the Reynolds 
number increases it moves toward the inner wall and eventually occupies the entire 
inner half of the cross-section at at* = n. 

(v) Regarding the axial shear stress, for the periods of time during which the axial 
flow is unidirectional and positive, its maximum is located at the inner bend for 
Re, = 1 ,  whereas for larger Reynolds number i t  shifts to the outer bend. During 
periods that the axial flow ceases to be unidirectional the area of local maximum 
shear stress is invariably located a t  the inner bend, indicating strong local reversal 
of the flow. 

(vi) In regard to the circumferential shear stress for RP,,, = 1 and 200. its local 
maximum for all times throughout the cycle is located at q5 in ,  slightly towards the 
inner bend for the former and slightly toward the outer bend for the latter. For 
Re, > 200 more than one local maxima and minima are observed; an indication of 
the existence of a vortex structure with several pairs of vortices. 

Searching for an understanding of the flow of blood in the aortic arch and the 
physiological conditions leading to atherosclerosis has for a long time been a major 
driving factor. behind advances in our knowledge of the patterns and properties of 
flows through curved pipes. The present work may be relevant in explaining 
phenomena such as cholesterol build-up in the aortic walls. For example, it is the 
inner bend of the aorta that  is most severely affected by the disease (Texon 1980). 
For high-Reynolds-number flows, pertinent to conditions in the aorta, our results 
show that backflow occurs and occupies the inner half of the cross-section at ot* = X. 
At the inner section, when the axial flow is unidirectional, i.e. only positive axial 
flow, the axial shear stress is a minimum; when backflow is present, it is a maximum. 
The net effect over the cycle may be a deposition of cholesterol. This matter needs 
to  be studied further to complement the work of Chang & Tarbell (1985) who did 
similar work imposing a physiological pressure gradient. 

In closing, we mention another point of concern, namely that of symmetry. It was 
not until recently t h a t  Winters (1984) and Winters & Blindley (1984) reported that 
the condition of symmetry should be viewed with caution, a t  least for fully developed 
steady flows, for they find asymmetric solutions arising from a symmetry-breaking 
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bifurcation point. They also find that all multiple solutions, except the two-cell ones, 
are unstable with respect to either symmetric or asymmetric perturbations. No such 
finding has been reported, yet, for unsteady flows. This raises the issue of multiple 
solutions irrespective of symmetry. Yang & Keller (1986), Nandakumar & Masliyah 
(1982) and Dennis & Ng (1982) have all reported the existence of multiple solutions 
for steady flows. These studies all imposed the symmetry condition and yet all 
reported multiple solutions. While this evidence, for steady flow, is not directly 
relevant to our unsteady analysis, it does call for further work to see if a similar 
situation arises for unsteady flows. 
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